

Science Quarter 1 - Module 3: **Potential Energy** and Kinetic Energy

Science – Grade 8
Alternative Delivery Mode
Quarter 1 – Module 3: Potential Energy and Kinetic Energy
First Edition. 2020

Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may, among other things, impose as a condition the payment of royalties.

Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this module are owned by their respective copyright holders. Every effort has been exerted to locate and seek permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them.

Published by the Department of Education Secretary: Leonor Magtolis Briones

Undersecretary: Diosdado M. San Antonio

Development Team of the Module

Writers: Cheri Madleen T. Samaco

Editors: Nonita C. Patalinghug, Rhoda M. Delos Santos

Reviewers: Bernabe L. Linog, Relyn D. Raza

Illustrator: Rosa Mia L. Pontillo

Layout Artist: Celeste Faith R. Almanon, Jay S. Ayap

Management Team: Francis Cesar B. Bringas

Isidro M. Biol, Jr. Maripaz F. Magno

Josephine Chonie M. Obseñares

Gregoria T. Su Marvilyn C. Francia Nonita C. Patalinghug

Printed in the Philippines by

Department of Education – Caraga Region

Office Address: Teacher Development Center

J.P. Rosales Avenue, Butuan City, Philippines 8600

Telefax: (085)342-8207/(085)342-5969

E-mail Address: caraga@deped.gov.ph

Science Quarter 1 – Module 3: Potential Energy and Kinetic Energy

Introductory Message

This Self-Learning Module (SLM) is prepared so that you, our dear learners can continue your studies and learn while at home. Activities, questions, directions, exercises, and discussions are carefully stated for you to understand each lesson.

Each SLM is composed of different parts. Each part shall guide you step-bystep as you discover and understand the lesson prepared for you.

Pre-tests are provided to measure your prior knowledge on lessons in each SLM. This will tell you if you need to proceed on completing this module or if you need to ask your facilitator or your teacher's assistance for better understanding of the lesson. At the end of each module, you need to answer the post-test to self-check your learning. Answer keys are provided for each activity and test. We trust that you will be honest in using these.

In addition to the materials in the main text. Notes to the teacher are also provided to our facilitators and parents for strategies and reminders on how they can best help you on your home-based learning.

Please use this module with care. Do not put unnecessary marks on any part of this SLM. Use a separate sheet of paper in answering the exercises and texts. And used the instructions carefully before performing the task.

If you have any questions in using the SLM or any difficulty in answering the tasks in this module, do not hesitate to consult your teacher or facilitator.

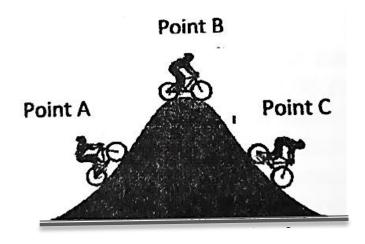
Thank you.

What I Need to Know

This module was designed and written with you in mind. It is here to help you master potential and kinetic energy. The scope of this module permits it to be used in many different learning situations. The language used recognizes the diverse vocabulary level of students. The lessons are arranged to follow the standard sequence of the course. But the order in which you read them can be changed to correspond with the textbook you are now using.

After going through this module, you are expected to:

1. Identify and explain the factors that affect potential and kinetic energy. (MELC Week 2-3)



What I Know

Choose the letter of the correct answer. Write your answers on a separate sheet of paper.

- 1. An object from a certain height falls freely. Which of the following happens to PE and KE when the object is half on its way down?
 - A. loses PE and gains KE
 - B. gains PE and loses KE
 - C. loses both PE and KE
 - D. gains both PE and KE
- 2. How do you compare the PE of the moving object at the highest point compared to its KE?
 - A. PE is greater than KE
 - B. PE is equal to KE
 - C. PE is lesser than KE
 - D. KE is greater than PE
- 3. Which of the following quantities has the greatest influence on the amount of kinetic energy of a car while traveling on a highway?
 - A. mass
 - B. size
 - C. speed
 - D. weight
- 4. Which of the following pair of quantities are the factors that affect kinetic energy?
 - A. force and distance
 - B. mass and height
 - C. mass and speed
 - D. time and height

For Questions 5-6. Refer to the illustration below.

- 5. Which point has increasing kinetic energy?
 - A. Point C
 - B. Point B
 - C. Point A
 - D. Point A & C
- 6. Which point has the greatest potential energy?
 - A. Point A
 - B. Point B
 - C. Point C
 - D. Point A & C
- 7. Which of the following statements is TRUE about potential energy?
 - A. It is dependent on the speed of an object.
 - B. It does not depend on the mass of the object.
 - C. It does not depend on the strength of gravity.
 - D. It is affected by the mass and location of an object with respect to the ground.
- 8. Which of the following does not affect the amount of potential energy of an object?
 - A. mass
 - B. speed
 - C. height or location
 - D. strength of gravity

- 9. The following applies the concept of potential energy EXCEPT:
 - A. water in a dam
 - B. a person playing the guitar
 - C. a rock sitting at the edge of a cliff
 - D. tree branches high up in a tree
- 10. What happens to the kinetic energy of an object if its speed is doubled?
 - A. twice as much
 - B. thrice as much
 - C. increases four times
 - D. decreases four times

Lesson

Potential Energy and Kinetic Energy

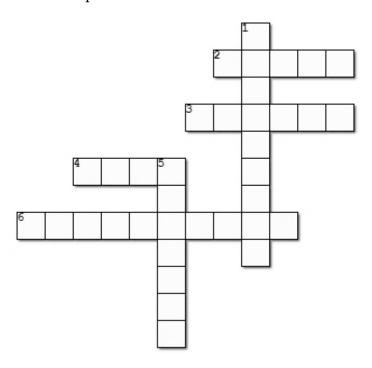
The word energy is used very often in our daily life. In science, there are many forms of energy; however, this module shall only focus on Potential Energy and Kinetic Energy.

What's In

Energy: The ability to do work

Let us consider the following situations: A fast-moving softball hit a stationary, open door which caused it to move. An object lifted to a certain height using a rope, elevated the object from the ground. A hammer struck on a nail that was placed on a piece of wood, pushed the nail into the wood. A toy car's key was twisted, placed on the floor, and started to move. In all these situations, forces acting on the objects are doing work.

An object requires energy to do work. Consider two objects A and B that are about to interact with each other. When object A is pushed, an applied force is doing work on it. Object A possesses kinetic energy while moving towards a stationary object B. In this situation, object A loses energy while object B gains energy. When this happens, energy is transferred from object A to object B. This indicates that any object that has energy can do work.


Energy is the ability or capacity to do work. Its unit is the same as the unit of work, expressed in joule (J) in the SI system. One (1) J is the energy needed to accomplish one (1) joule of work. A larger unit of energy called kilojoule (kJ) is sometimes used. One (1) kJ is equal to 1000 J.

Activity 1. Energy Crossword Puzzle

Objective: Familiarize the words that are associated to the concept of energy.

Complete the crossword puzzle below.

Across:

- 2. _____ is the unit of energy in SI system.
- 3. The ability to do work is _____.
- 4. The product of force and displacement is _____.
- 6. The total _____ energy is the sum of kinetic and potential energy.

Down:

- 1. _____ energy is stored due to the object's position.
- 5. _____ energy is associated with motion.

Notes to the Teacher

Provide extra copies of this page for students' use.

Potential Energy

In the previous lesson, you were asked if the man lifting the box is doing work on it.

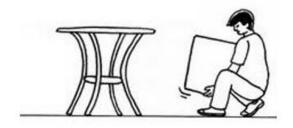


Figure 1. A man lifting a box

Source: Pia C. Campo, et. Al., A man lifting a box, Science 8 Learner's Material, Philippines, FEP Printing Corporation, 2016

Which or who is doing work in Figure 1? Is it the table, the box, or the man? Yes, you are correct! The man is doing work on the box. Specifically, the force he applied while lifting is doing work on the box. What is the direction of the force exerted by the man on the box? What is the direction of the motion of the box? Yes, both are directed upward. Work, as discussed earlier, is a way to transmit energy. Hence, when the man exerted force in lifting the box, he loses energy. Work is done on the box, and the box gains energy.

You have learned that force of gravity is the force exerted by the Earth on all things. It is always directed downward or towards the center of the Earth. Consequently, when an object is raised from the Earth, the force exerted in lifting the object is equal to its weight,

$$F = Weight = mg$$

The work done in lifting the object is:

$$W = Fd$$

where, the displacement (d) is the height (h) the object is raised. Thus, the work done in lifting the object against the gravitational force is given by

$$W = m q h$$

The work performed in lifting an object is equals to the potential energy the object gains. An object absorbs energy when lifted from the ground and when allowed to fall, it loses energy. The energy that the body gains or losses with respect to its position is called potential energy (PE) and is given by

PE=mgh

where: *PE* is the potential energy in joules (J);

m is the object's mass in kilograms (kg);

g is the acceleration due to gravity which is 9.8 m/s^2 ; and

h is the height of the object from the reference point (e.g., ground) in meters (m).

Kinetic Energy

What is common in the following situations? A running athlete on the track, a flowing water on the ground, a falling coconut from its tree, a rolling rock on the seashore, and a soaring airplane into the air. They are all moving and are acted upon by forces. Any object that moves possesses energy and can do work. An object that moves quicker can do more work than an identical object that moves slowly. How much energy does a moving object possess? We say that the kinetic energy of an object moving at a certain speed is equal to the work done to make it acquire that speed.

The energy of a moving object is called energy of motion or kinetic energy (KE). The word kinetic comes from the Greek word *kinetikos* which means moving. Kinetic energy measures the amount of work the object can do because of its motion.

This can be computed using the formula:

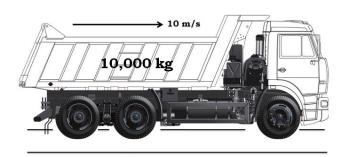
 $KE = \frac{1}{2} mv^2$

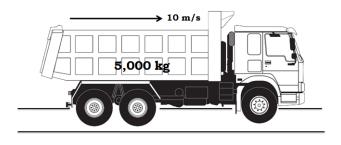
where: *KE* is the kinetic energy in joule (J),

m is the object's mass in kilogram (kg), and

v is the object's speed in meter per second (m/s).

From the formula, the kinetic energy of an object depends on its mass and speed. What will happen to the KE of an object if its mass is doubled but the speed remains the same? The KE of an object is also doubled. How about if the speed is doubled but the mass remains the same? The KE of an object increases four times. This means that the greater the mass, the greater the kinetic energy; and the faster the speed the higher the kinetic energy as well.




Activity 2. Kinetic Energy

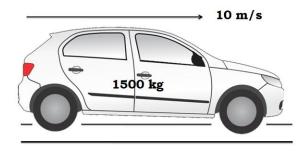
Objective:

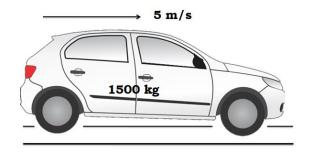
After performing this activity, you should be able to investigate that increasing or reducing the mass and/or speed affect/s the kinetic energy of the object. The situations and explanations below are introduced to guide and help you answer the questions that follow.

Situation A: Two vehicles of different mass moving at same speed.

https://pixabay.com/get/57e4d44a4f50ab14f6da8c7dda 35367b1c3cdce65055704b_1280.png?attachment= https://pixabay.com/get/57e4d2464354b108f5d08460da 293277163ddde6535177_1280.png?attachment=

The kinetic energy of a 10,000-kg vehicle is twice as much as the kinetic energy of a 5,000-kg vehicle when both are travelling at the same speed.


Why is this so?


The 10,000-kg vehicle has twice as much the mass of the 5,000-kg car. Since they are travelling at the same speed, using the formula of kinetic energy,

 $KE = \frac{1}{2}mv^2$ = $\frac{1}{2}(2m)v^2$

Therefore, KE = $2(\frac{1}{2}mv^2)$. The kinetic energy is doubled.

Situation B: Two vehicles of the same mass moving at different speed.

https://pixabay.com/get/53e2d3414e53a e14f6d1867dda35367b1c3cdee45157754 1_1920.png?attachment= The kinetic energy of a car travelling at 10 m/s is four times the kinetic energy of a car travelling at 5 m/s.

Why is this so?

Car travelling at 10 m/s has twice as much the speed of the other car. Since the mass is the same for both vehicles, using the formula of kinetic energy.

KE =
$$\frac{1}{2}$$
 mv²
= $\frac{1}{2}$ m(2v)²
= $\frac{1}{2}$ m (4v²)

Therefore, KE = $4(\frac{1}{2}mv^2)$. The kinetic energy is increased four times.

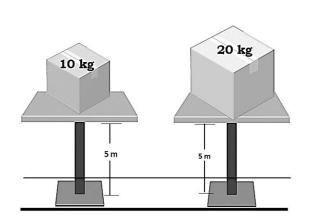
Procedures:

1. Complete the table below. Refer to the situations and explanations above to guide and help you determine what happens to kinetic energy of an object when either mass or speed is changed. Use directly the formula of kinetic energy, KE=½mv². Number 1 is done for you.

Table 1. Effects of mass and speed to kinetic energy

Kinetic Energy (KE)	Mass	Speed
1. doubled	doubled	constant
2.	constant	tripled
3.	doubled	doubled
4.	reduced to ½	reduced to ½
5.	tripled	tripled
6.	reduced to ½	doubled

Questions:


- 1. Which of the numbers above is KE largest? _____
- 2. Which of the numbers above is KE smallest? _____
- 3. Rank the KE of the numbers above from smallest to largest.

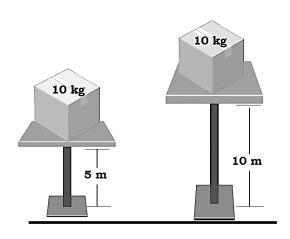
Activity 3. Potential Energy

Objective:

After performing this activity, you should be able to investigate that increasing or reducing the mass and/or height affect/s the potential energy of the object. The situations and explanations below are introduced to guide and help you answer the questions that follow.

Situation A: Two objects of different mass are situated at the same height.

The potential energy of 20-kg box is twice as much as the potential energy of a 10-kg box when both boxes are of the same height from the ground.


Why is this so?

The 20-kg box has twice as much the mass of the 10-kg box. Since they are of the same height from the ground, using the formula of potential energy, PE = mgh

= (2m)gh

Therefore, PE = 2mgh. The potential energy is doubled.

Situation B: Two objects of the same mass are situated at different height.

https://pixabay.com/get/57e2dc4a4a52ad14f6da8c7dda35367b1c3cdce75158784b_1280.png?attachment=

https://pixabay.com/get/57e5dd424c50b108f5d08 460da293277163ddce0515073_1280.png?attachme nt= The potential energy of the box that is 10 m from the ground is twice as much the potential energy of the box that is 5 m from the ground when both boxes are of the same mass.

Why is this so?

The box that is 10 m from the ground has twice as much height of the other box. Since mass is the same for both boxes, using the formula of potential energy,

PE = mgh

=mg(2h)

Therefore, PE = 2mgh. The potential energy is doubled.

Procedure:

1. Complete the table below. Refer to the situations and explanations above to guide and help you determine what happens to potential energy of an object when either mass or height is changed given a constant value of acceleration due to gravity, g = 9.8m/s². Use directly the formula of potential energy, PE = mgh. Number 1 is done for you.

Table 2. Effects of mass and height to potential energy

Potential Energy (PE)	Mass	Height
1. doubled	doubled	constant
2.	constant	tripled
3.	doubled	doubled
4.	reduced to ½	reduced to ½
5.	tripled	tripled
6.	reduced to ½	doubled

Questions:

1.	Which	of the	numbers	above	is	PE	largest?	
----	-------	--------	---------	-------	----	----	----------	--

2.	Which of	f the num	bers above	is PE smallest?	

3. Rank the PE of the numbers above from largest to smallest	კ. ∶	Rank	the PE	of the	: numbers a	above from	largest to sma	llest.
--	------	------	--------	--------	-------------	------------	----------------	--------

What I Have Learned

Fill in the blanks with the correct answers to complete the statements. Write your answers on a separate sheet of paper.

1.	Theof the object increases when elevated from the ground to a
	certain height.
2.	An object's potential energy can be computed using the formula
3.	Any moving object possesses energy called and can be computed
	using the formula
4.	is the ability or capacity to do work.
5.	When an object's speed doubles, its kinetic energy
6.	When an object's mass doubles, its kinetic energy also
7.	The more mass an object has when lifted to a certain height, the
	potential energy.

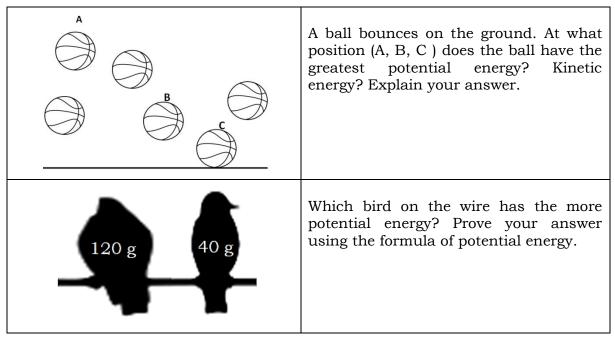
What I Can Do

Activity 4: Potential Energy and Kinetic Energy

Identify whether the objects in the given situations possess *Potential Energy* or *Kinetic Energy*. Write your answers on a separate sheet of paper.

- 1. Bird flying
- 2. Log in a fireplace
- 3. Watermelon on a desk
- 4. Car travelling on the highway
- 5. Car sitting in a driveway
- 6. Bunch of coconut stick on a table
- 7. Ball bouncing on the floor
- 8. Child jumping on his bed
- 9. Child sleeping on the crib
- 10. Marble rolling down the ramp

Choose the letter of the correct answer. Write your answers on a separate sheet of paper.


sheet of	paper.
1. The fo	llowing situations demonstrate potential energy EXCEPT: A. a bullet fired from a gun B. a child at the top of a slide C. a car parked at the top of a hill D. river water at the top of a waterfall
2. The po	A. mass B. motion C. position D. weight
3. The fo	llowing conditions exhibits kinetic energy EXCEPT: A. water inside a glass B. rolling stone from the hill C. running athlete on the field D. dancing kids in the living room of the house
	of the following quantities, when doubled, has the greatest effect on the nt of kinetic energy? A. mass B. size C. speed D. weight
_	een ball is higher from the ground than a yellow ball and both have the mass, which ball has more potential energy? A. green ball B. yellow ball C. both has the same PE D. both has the same KE
6. Which an obj	of the following factors does not affect the amount of potential energy of ect? A. gravity B. height C. mass D. speed

which happens to kinetic energy it mass is doubled?
A. doubled
B. the same
C. tripled
D. quadrupled
Potential energy is the energy of an object based on its
A. height and mass
B. mass and speed
C. speed and height
D. weight and speed
Where does a car on a hill have the greatest potential energy?
A. top of the hill
B. bottom of the hill
C. halfway down the hill
D. it has the same potential energy at all points
O. Kinetic energy is the energy an object possessed due to its
A. mass
B. motion
C. position
D. weight

Activity 5: More About PE and KE

Given the pictures below, answer the corresponding questions that follow. Write your answers on a separate sheet of paper.

https://pixabay.com/get/52e5d3444350ad14f6da8c7dda35367b1c3cdee55a56744c_1280.png?attachment= https://pixabay.com/get/55e0d0444d57b108f5d08460da293277163fdee0505870_1280.png?attachment=

Rubric for Scoring

Points	Description
2	Discussion is complete with no misconception.
1	Discussion is incomplete with minor misconception.
0	No discussion

17

.ε A .2 D A Assessment

٠, Э

.9 D ٦.

A .8 ٠. A

10'B .6

What can I do

Potential energy .ε Potential energy .2 Kinetic energy

Potential energy .5 Kinetic energy ٠,

Potential energy .9

Potential energy .6 Kinetic energy .8 Kinetic energy ٠.

10. Kinetic energy

What's More

Activity 1. Kinetic energy

 Doubled
 Stimes t 9 times the original KE

1/8 of the original KE . Р 8 times the original KE .ε

27 times ٦.

Questions: Doubled

27 times Largest KE: Number 5,

.ε 1/8 of the original KE. Smallest KE: Number 4,

largest: 4,1,6,3,2,5 Rank KE smallest to

Activity 2. Potential Energy

Tripled .2 Ţ. Doubled

¹/₄ of the original PE 4 times the original PE .ε

9 times original PE ٦.

Same as initial PE .0

Questions

PE smallest: Number 4, times the original PE Ţ. PE largest: Number 5, 9

PE largest to smallest: 14 of the original PE

6,4,2,1,6,4

A O I pk

What I have learned

What I have learned

4. В С .ε 5. B A .1

.9 .5

7. D В A

J.01

9. B

ъ p t u e u s a m Ţ 7 u e n e r g y ı 9 I u o t² đ,

1. potential energy.

at the same height.

=(3m)gh

potential energy is tripled

Therefore, PE=3mgh.The

the formula PE=mgh,

the 40-g bird. Using

potential energy than

maximum speed before

is at point B, because

greatest kinetic energy

On the other hand, the

its maximum height.

because the ball is at

energy is at point A,

A. The greatest potential

Additional activities

three times more

it hits the ground.

B. The 120-g bird has

the ball is at its

7. PE = mgh.

3. kinetic energy

 $'KE = \frac{1}{1}mv^2$

4. energy

6. doubles 5. quadruples

7. more

Answer Key

References

Books

Campo, Pia C., et.al. *Science Learner's Module 8.* Pasig City: Department of Education, 2016.

For inquiries or feedback, please write or call:

Department of Education - Bureau of Learning Resources (DepEd-BLR)

Ground Floor, Bonifacio Bldg., DepEd Complex Meralco Avenue, Pasig City, Philippines 1600

Telefax: (632) 8634-1072; 8634-1054; 8631-4985

Email Address: blr.lrqad@deped.gov.ph * blr.lrpd@deped.gov.ph